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energies of 9.687, 9.886, 14.414, and 33.678 keV.
The x-ray–induced reaction in ice VII was most
effective with 9.687- and 9.886-keV x-radiation,
which are absorbed readily by H2O; was less
effective with 14.414-keV x-radiation; and was
not observed with 33.678-keV high-energy
x-radiation, which passed through H2O without
adequate absorption. High-pressure synchrotron
XRD studies typically use high-energy x-radiation
above 20 keV with short exposure times of
seconds to minutes; this would be insufficient to
induce the reaction. On the other hand, low-
energy x-radiation below 12 keV would be
largely absorbed by the diamond anvils and are
seldom used for XRD studies. In our exper-
iments, the ~10-keV x-rays pass through the low-
absorbance Be gasket and provide optimal
conditions for inducing the reaction.
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Colloid Transport of Plutonium in the
Far-Field of the Mayak Production
Association, Russia
Alexander P. Novikov,1 Stepan N. Kalmykov,1,2 Satoshi Utsunomiya,3 Rodney C. Ewing,3*
François Horreard,4 Alex Merkulov,4 Sue B. Clark,5 Vladimir V. Tkachev,1 Boris F. Myasoedov1

Sorption of actinides, particularly plutonium, onto submicrometer-sized colloids increases
their mobility, but these plutonium colloids are difficult to detect in the far-field. We
identified actinides on colloids in the groundwater from the Mayak Production Association,
Urals, Russia; at the source, the plutonium activity is ~1000 becquerels per liter. Plutonium
activities are still 0.16 becquerels per liter at a distance of 3 kilometers, where 70 to 90 mole
percent of the plutonium is sorbed onto colloids, confirming that colloids are responsible for the
long-distance transport of plutonium. Nano–secondary ion mass spectrometry elemental maps
reveal that amorphous iron oxide colloids adsorb Pu(IV) hydroxides or carbonates along with
uranium carbonates.

Submicrometer-sized colloids, consisting of
inorganic and/or organic compounds, occur
at up to 1017 particles per liter in ground-

water and provide an important means of trans-

porting elements with low solubilities, including
the actinides (1–3). The stability of these colloids
is a function of the composition of groundwater
and the hydrologic conditions (4).

The formation of actinide pseudo-colloids,
in which the actinide sorbs onto aquatic col-
loids, can stabilize actinides in natural waters
and increase their concentrations by many
orders of magnitude over the values expected
from solubility calculations (2, 5). The associ-
ation of Pu with colloids 25 to 450 nm in size
has been observed 3.4 km from a source at Los
Alamos National Laboratory (6). This migra-
tion distance is greater than modeled estimates
(7). Similar transport has also been seen at the

Savannah River Site (8). At Nevada Test Site, Pu
has migrated 1.3 km in 30 years in groundwater
by means of colloids with sizes of 7 nm to 1 mm
(9). Model results imply that colloid-facilitated
transport of actinides at Yucca Mountain could
lead to as much as a 60-fold increase in the total
effective dose equivalent to an exposed popula-
tion (10).

Colloid-facilitated transport is likely the
means for actinides’ long-distance transport in
groundwater. Many previous studies have ex-
perimentally demonstrated adsorption of Pu onto
a variety of minerals and mineral assemblage
(11–13). However, little is known of the specia-
tion of the actinides or the type of colloids with
which they are associated, particularly during the
transport in the far-field where there are many
competing processes, such as desorption from
the colloids and resorption onto minerals.

To understand the colloid-associated actinides
and their long-distance transport in groundwater,
we investigated Pu migration in the natural
groundwater system at one of the most contami-
nated nuclear sites in the world: Mayak, Russia.
Mayak is a nuclear waste reprocessing plant near
Kyshtym, in the Southern Urals, Russia (14)
(Fig. 1). Waste effluents containing 90Sr, 137Cs,
241Am, and 239Pu were discharged into Lake
Karachai (15, 16); these were weakly alkaline
NaNO3 brine solutions with a pH of 7.9 to 9.3
and a salt concentration of 16 to 145 g/liter. The
major dissolved ionic species were NO3

– (11 to
78 g/liter), CH3COO

– (0.6 to 20 g/liter), C2O4
2–

(0.9 to 14 g/liter), SO4
2– (0.12 to 1.3 g/liter), Na+

(6 to 32 g/liter), Cl– (20 to 350 mg/liter), U(VI)
(13 to 196 mg/liter), Ca2+ (8 to 80 mg/liter), and
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Mg2+ (8 to 69 mg/liter) (17). Lake Karachai is
connected to the 55- to 100-m-thick groundwater
zone, in which fluids flow through fractured
Silurian and Devonian metavolcanic rocks with
andesitic and basaltic composition (17). We
completed systematic analyses of the compo-
sition and redox state of groundwaters and fil-
tered samples, and we characterized the actinides
associated with the colloids (18).

Because of the high concentration of NO3
–

in waste effluents, we used the presence of
NO3

– as a measure of the extent to which the
contaminant plume had penetrated the ground-
water system. The Pu radioactivity was ~4.8
becquerels (Bq)/liter at 0.05 km from the source,
whereas it was ~0.029Bq/liter at 4.0 km (Table 1),
which is approximately equivalent to ~2.1 parts
per trillion (ppt) and ~0.013 ppt, respectively,
versus ~1000 Bq/liter (19) in the waste effluent.
The redox potential, Eh, of the groundwater was
+50 to ~+480 mV, and the pH was ~6 to 8.
Nitrate concentrations decreased as distance from
the source increased, although at greater depths
(~100m) original waste effluents with a relative-
ly high concentration of Pu (0.16 Bq/liter) were
present even 3.9 km from the source.

To understand stable chemical species of
the actinides under the groundwater condi-
tions, we constructed predominance diagrams
for U and Pu species using thermodynamic
calculation (20) with updated solubility data
(21), based on the total concentrations of the
groundwaters from the wells nearest to the
source (Fig. 2, A and B) and from a well
located 3.2 km away [well number 1, drilled in
1969 (1/69)] (Fig. 2, C and D). This analysis
implies that UO2(CO3)2

2– is the dominant spe-
cies near the source, whereas UO2(CO3)3

4– is
present at well 1/69. However, the data (circles
in Fig. 2, A and C) are close to the equilibrium

boundary between these two U carbonate spe-
cies. Thus, it is likely that both of these U(VI)
carbonate species are dominant in the ground-
water of Mayak, which is consistent with the
oxidation state analysis (table S1). In addition,
the U distribution on the colloidal matter for
fractions of different sizes also indicates that 80
to 90% of the U is present as a soluble species
(Fig. 2E). Similarly, most of the Np (70 to 80%)
is present as a soluble Np(V) phase (Fig. 2E and
table S1), most likely as NpO2

+, as anticipated
from the stability diagram (fig. S1).

The stability diagrams (Fig. 2, B and D)
show that the total groundwater compositions
near the source (solid square) and at the well
1/69 (open square) are in the region of solid
PuO2. Even though the solution is supersat-
urated with respect to crystalline plutonium

dioxide PuO2(c), the precipitation will require
aging in order to dehydrate the metastable Pu
hydroxyl species into PuO2(c) (21, 22). Given
that amorphous Pu(OH)4 always precipitates
from solution instead of PuO2 (21), the stabil-
ity field of amorphous plutonium hydroxide
Pu(OH)4(am) is also shown. The size dependence
of the Pu distribution (Fig. 2E) shows that ~30
and ~10% of Pu is present as a soluble species
in well 63/68 (near the source) and 1/69,
respectively, which indicates that the actual
Pu concentration in the “solution” was lower
than the total Pu concentration in the ground-
water. Because particles smaller than ~1 nm (the
size of the 3-kD filter) were counted as a soluble
species, a part of the Pu associated with the
colloids, which are <1 nm, may have been
counted as part of the soluble fraction. The

Fig. 1. Map of the study
area. The locality map
and stratigraphyaremod-
ifications of those in (17).
The Mayak site covers
~160km2 (17). Redpoints
labeled with the numbers
are wells. The numbered
basins are natural or man-
madereservoirs fornuclear
waste fluids.

Table 1. Concentration of actinides in the groundwaters from the Mayak region, Russia. The well index represents the well number followed by the
drilling year (e.g., 41/77 is well 47, drilled in 1977). I.C., concentration of total inorganic carbon species in solution; n.d., not determined.

Well index Distance
(km)

Depth
(m)

Eh
(mV)

pH I.C.
(ppm)

NO3
–

(ppm)

239,240Pu
(Bq/liter)

241Am
(Bq/liter)

237Np
(Bq/liter)

238U
(ppm)

Source 0.0 <78,000 1,000 420 41 25
41/77 0.05 20 +480 5.9 4,760 45,000 4.8 0.91 0.14 n.d.

45 +50 8.05 n.d. n.d. 2.8 0.34 0.12 n.d.
63/68 1.1 20 +400 6.0 1,220 45,000 0.13 0.21 18.2 20

100 +60 7.33 n.d. n.d. 0.31 1.32 11.1 38
10/68 1.5 60 +390 6.6 1,830 52,000 0.86 4.75 9.1 24

100 +330 6.6 n.d. n.d. 0.18 0.50 17.0 47
65/68 1.75 60 +300 7.5 n.d. 28,000 0.46 0.72 2.8 0.3

100 +200 6.9 n.d. n.d. 0.052 0.094 2.2 1.1
3/68 1.9 60 +350 7.1 1,160 32,000 1.62 0.29 10.4 38

100 +300 6.45 n.d. n.d. 1.19 0.40 12.2 43
9/68 2.15 60 +310 7.60 952 27,100 0.036 1.10 5.8 26

100 +350 5.85 n.d. n.d. 0.21 1.08 10.9 36
176/94 2.5 27 n.d. n.d. n.d. n.d. 3.0 0.7 0.36 3.2

63 +90 7.33 251 3,910 0.8 0.11 0.78 2.8
1/69 3.2 44 +100 7.9 159 21 0.089 0.15 2.1 0.26
14/68 3.9 100 +100 7.9 200 498 0.16 0.087 2.5 19
209/70 4.0 40 +50 8.12 136 6.5 0.029 0.08 0.03 0.02
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actual Pu concentration in the groundwater
could have been even lower than the percent-
age shown in Fig. 2E. Thus, the data points for
the actual soluble Pu concentrations should be
plotted at lower values in the diagram of Fig. 2,
B and D, as indicated by the arrows. In the
event that an intrinsic Pu(IV) phase precipitates
from solution, the Pu concentrations in solution
(data points in Fig. 2, B and D) will also be
shifted downward to the stability field of aqueous
plutonium hydroxide Pu(OH)4(aq) (the dashed
arrows).

A dominant fraction of Pu(OH)4(aq) is not
inconsistent with the oxidation state analysis that
reveals a predominance of Pu(IV), although it is
also possible that different chemical Pu(IV) spe-
cies are incorporated into aquatic colloids. In
addition, 70 to 90% of Pu was associated with
the colloidal fraction on 3- and 10-kD filters (the
size range of 1 to 15 nm). The ratio of Pu asso-
ciated with colloids to soluble species (Fig. 2F)
was nearly constant (~2.2) within 2.15 km of the
source, regardless of the Pu concentration, and
the values became higher (>5) at distances of
>2.5 km (Fig. 2F) as well as U partitioning
(Fig. 2G). This result suggests that Pu was par-
titioned between colloids and soluble species
within 2.5 km, whereas at >2.5 km, the excess
fraction of Pu-bearing colloids is transported in
the groundwater system, ascribed to a disequi-
librium derived from the slow desorption of Pu
from the colloids or to the irreversible incor-
poration of trace Pu into aquatic colloids.

Electron microscopy analysis of the colloid
fraction from well 1/69 revealed a variety of
phases (Fig. 3A). Spherical Fe oxide and Fe
hydroxide are the most abundant phases, and
they are associated with minor Si and Ca that
range in size from a few nanometers to 100 nm
across, forming aggregates up to several mi-
crometers in size (Fig. 3, B and C). Based on
the electron diffraction pattern, the Fe oxide/
hydroxide is characterized to be an amorphous
Fe hydroxide (HFO). Amorphous HFO com-
monly occurs in soils and is known to be an
efficient adsorbent of toxic metals (23). The
other identified phases include clays and cal-
cite; rutile, hematite, barite, and rancieite; and
monazite, in decreasing order of abundance.
Nano–secondary ion mass spectrometry (SIMS)
elemental maps for the colloids from well 1/69
reveal that some Al and Mn are also associated
with the Fe (Fig. 3D). The approximate atomic
ratios of Al to Fe and Mn to Fe are ~0.003 and
~0.004, respectively. The amount of associated
Ca is not less than the amount of Al and Mn but
is at the same level as in the mixture of HFO
(Fig. 3C). Thus, this aggregate of colloids can be
characterized as amorphous HFO adsorbing less
than 1 atomic % of Al and Mn.

The Pu map (Fig. 3D) is nearly the same as
that of the U, which is associated with the Fe
oxide. Semiquantitatively, the atomic ratio of
U to Fe is ~0.0004, and the ratio of Pu to U is
~0.03, indicating that amorphous HFO is a
pseudo-colloid sorbing both the Pu and U. Based

on the thermodynamic calculations for the ex-
pected, dominant Pu and U species, Pu(OH)4(aq)
occurs with UO2(CO3)3

4– and to a lesser extent
with UO2(CO3)2

2–, subsequently sorbing onto
the amorphous HFO. Because the SIMS analysis
causes the destruction of the sample, there are no
crystallographic data available for the same HFO
grain for which Pu was detected by nano-SIMS
and examined by electron microscopy. Elemental
mapping of the other colloidal material showed
that U is predominantly adsorbed onto amor-
phous HFO and to a lesser extent onto rancieite
[(Ca,Mn)Mn4O93H2O] and hematite (Fe2O3)
(fig. S2). We did not find any intrinsic Pu(IV)
colloids nor any actinide adsorption onto the
other colloidal phases, including clays, calcite,
rutile, barite, and monazite in the sample from
well 1/69. These results are consistent with ex-
periments that have reported a higher adsorp-
tion coefficient for Pu onto Fe oxide colloids
than onto montmorillonite and silica (24). Ad-
ditionally, the high ionic strength of this system
may inhibit adsorption onto inorganic colloids,
with the exception of Fe oxide (24). At dis-
tances greater than 2.5 km, the desorption pro-
cess is anticipated to occur slowly, because the
previous experiments revealed that the Pu de-
sorption process from a hematite surface is con-
siderably slower than the adsorption rate (24).
Based on the Pu adsorption onto amorphous
HFO in this system, most Pu(IV) in our oxida-
tion analysis (table S1) may be the result of
reduction of Pu(V) to Pu(IV) after adsorption

Fig. 2. Stable species of actinides and evidence of actinides bound to colloids.
(A and B) Thermodynamic stability diagrams of U and Pu species under the
conditions near Karachai Lake (well 41/77). (C and D) Thermodynamic stability
diagram of U and Pu species under the conditions at well 1/69 located 3.9 km
from the source at a depth of 44 m. Total concentrations in the groundwater are
plotted as circles (U) and squares (Pu). Solid symbols show data near the source
[(A) and (B)], and open symbols show the data at well 1/69 [(C) and (D)]. Roman
and italic fonts represent solid and aqueous species, respectively. The arrows
indicate the transition of solution composition that occurs when Pu precipitates
as intrinsic or aquatic colloids or is sorbed onto pseudo-colloids. For these

thermodynamic calculations, Act-2 application (20) was used with the database
of thermo.com.v8.r6+, which is an expanded version of the Lawrence Livermore
National Laboratory database. Solubility data of Pu(OH)4(aq) are updated based
on (21). In illustrating the stability fields (red) of Pu(OH)4(am) in (B) and (D), the
temperature was set to 25°C because of the limited solubility data in (21). (E)
Mole fraction of actinides (Pu, U, and Np) bound to colloids as a function of the
size. The 10- and 3-kD measures correspond to approximately 1.5 and 1.0 nm,
respectively. N.D., not determined. (F andG) Ratios between actinides bound to
colloids and in a soluble form for Pu and U. Pu and U concentrations are a total
in the groundwaters. ppm, parts per million.
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onto Fe oxide (11, 12). In addition, the high con-
centration of dissolved organic carbon (<20 g/liter
of CH3COO

–) near the source may result in the
reduction of Pu(V) into Pu(IV) in solution, as
reported in (12, 22). Even inorganic colloids can
be coated by humic acid, forming pseudo-
colloids, which can sorb the hydrolyzed species
more strongly than simple inorganic colloids
(22).

As compared with other minerals that may
sorb actinides, the Fe oxides have a high zero
point of charge (ZPC): 6.5 for Fe3O4 and 7.8
for a-FeOOH versus 4.6 for kaolinite, 2.5 for
montmorillonite, 2 to 2.4 for feldspars, and 2.0
for SiO2 (25). In particular, the ZPC for
amorphous Fe(OH)3 is 8.5 (25), and the value
should be the most appropriate for the HFO we
found because of the amorphous structure of
the Fe oxide/hydroxide. The high ZPC must
result in the positive charge on the surface
of HFO under the conditions in the Mayak
groundwaters; thus, the particles should be ef-
ficient adsorbents of negatively charged U spe-
cies. Although it is not evident how Pu(OH)4(aq)
is adsorbed onto the HFO together with
UO2(CO3)3

4–, the hydroxyls of Pu(OH)4(aq)
may be attached directly to the positively
charged HFO surface. According to recent
modeling studies (26), a Pu(IV) carbonate
species, Pu(CO3)3

2–, is also possible at pH >
7 in equilibrium with the atmosphere. Another

study (27) has also suggested that Pu carbonate
species could also be dominant at Mayak (fig.
S3), although the latest compilation of the
thermodynamic database for Pu speciation
gives only the maximum possible value for
the equilibrium constant of this species because
the experimental data are scattered (28). Thus,
the carbonate species was not included in the
calculations used to produce Fig. 2, B and D. If
the Pu is present as a carbonate species in the
Mayak system, the negatively charged Pu
species can be sorbed by HFO, as could the U
carbonate species. Ultimately, the polymeriza-
tion of carbonate species might result in Pu
association with U. Although further analysis is
required, we conclude that both Pu and U
species are adsorbed similarly onto the HFO
surface.

The subsurface migration of Pu from Lake
Karachai over more than 4 kmwithin ~55 years
after discharge is comparable to the transport
rate seen at the Nevada Test Site (1.3 km/30
years minimum) (9). Up until now, there has
been an argument over which colloidal phase
carries Pu and how they associate. Our
evidence of Pu sorption onto the specific
colloidal phase is applicable to systems that
are dominated by U under oxidizing con-
ditions, such as the proposed repository at
Yucca Mountain in Nevada. Because of differ-
ences in physicochemical conditions, site-

specific investigations of actinide colloids in
the far-field are necessary at each potential nu-
clear waste repository site.
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Fig. 3. Direct evidence of Pu adsorption onto amorphous Fe hydroxide. (A) Scanning electron
micrograph of typical colloids from well 1/69. Many spherical particles were observed with a size of
<1 mm. (B) High-angle annular dark-field scanning transmission electron microscopy image of the
spherical colloids. Electron diffraction patterns from these particles indicate that they are
amorphous. (C) Energy dispersive x-ray spectrum from the spherical particles shows that Fe is a
major constituent associated with trace amounts of Si and Ca. a.u., arbitrary units. (D) Nano-SIMS
elemental maps. Because the contrast of these maps has been enhanced to show the distribution
clearly, the intensity of the color in the chemical maps corresponds to the relative concentration for
each element but cannot be used to compare one element to another.
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